2 research outputs found

    Dynamic p-enrichment schemes for multicomponent reactive flows

    Full text link
    We present a family of p-enrichment schemes. These schemes may be separated into two basic classes: the first, called \emph{fixed tolerance schemes}, rely on setting global scalar tolerances on the local regularity of the solution, and the second, called \emph{dioristic schemes}, rely on time-evolving bounds on the local variation in the solution. Each class of pp-enrichment scheme is further divided into two basic types. The first type (the Type I schemes) enrich along lines of maximal variation, striving to enhance stable solutions in "areas of highest interest." The second type (the Type II schemes) enrich along lines of maximal regularity in order to maximize the stability of the enrichment process. Each of these schemes are tested over a pair of model problems arising in coastal hydrology. The first is a contaminant transport model, which addresses a declinature problem for a contaminant plume with respect to a bay inlet setting. The second is a multicomponent chemically reactive flow model of estuary eutrophication arising in the Gulf of Mexico.Comment: 29 pages, 7 figures, 3 table

    A basin- to channel-scale unstructured grid hurricane storm surge model applied to southern Louisiana

    Get PDF
    Southern Louisiana is characterized by low-lying topography and an extensive network of sounds, bays, marshes, lakes, rivers, and inlets that permit widespread inundation during hurricanes. A basin- to channel-scale implementation of the Advanced Circulation (ADCIRC) unstructured grid hydrodynamic model has been developed that accurately simulates hurricane storm surge, tides, and river flow in this complex region. This is accomplished by defining a domain and computational resolution appropriate for the relevant processes, specifying realistic boundary conditions, and implementing accurate, robust, and highly parallel unstructured grid numerical algorithms. The model domain incorporates the western North Atlantic, the Gulf of Mexico, and the Caribbean Sea so that interactions between basins and the shelf are explicitly modeled and the boundary condition specification of tidal and hurricane processes can be readily defined at the deep water open boundary. The unstructured grid enables highly refined resolution of the complex overland region for modeling localized scales of flow while minimizing computational cost. Kinematic data assimilative or validated dynamic-modeled wind fields provide the hurricane wind and pressure field forcing. Wind fields are modified to incorporate directional boundary layer changes due to overland increases in surface roughness, reduction in effective land roughness due to inundation, and sheltering due to forested canopies. Validation of the model is achieved through hindcasts of Hurricanes Betsy and Andrew. A model skill assessment indicates that the computed peak storm surge height has a mean absolute error of 0.30 m
    corecore